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Mediation Effects In 2-1-1 Multilevel Model:
Evaluation Of Alternative Estimation Methods

Jie Fang,1 Zhonglin Wen,2 and Kit-Tai Hau3
1Guangdong University of Finance & Economics

2South China Normal University
3The Chinese University of Hong Kong

We compared six common methods in estimating the 2-1-1 (level-2 independent, level-1
mediator, level-1 dependent) multilevel mediation model with a random slope. They were
the Bayesian with informative priors, the Bayesian with non-informative priors, the Monte-
Carlo, the distribution of the product, the bias-corrected, and the bias-uncorrected parametric
percentile residual bootstrap. The Bayesian method with informative priors was superior in
relative mean square error (RMSE), power, interval width, and interval imbalance. The prior
variance and prior mean were also varied and examined. Decreasing the prior variance
increased the power, reduced RMSE and interval width when the prior mean was the true
value, but decreasing the prior variance reduced the power when the prior mean was set
incorrectly. The influence of misspecification of prior information of the b coefficient on
multilevel mediation analysis was greater than that on coefficient a. An illustrate example
with the Bayesian multilevel mediation was provided.

Keywords: Bayesian method, multilevel mediation, prior information

Research in the educational, psychological, medical, man-
agerial, and other disciplines utilizing multilevel data often
involves tests of mediation. Importantly, multilevel media-
tion analyses allow researchers to explore the interactions
between constructs at different levels. Specifically, in con-
trast to the single-level mediation, multilevel mediation
analyses help explain how the level-2 (e.g., organization)
variables affect the individual-level variables (Fang, Zhang,
& Chiou, 2010).

Not surprisingly, therefore, multilevel mediation ana-
lyses have attracted great attention resulting in a large
number of studies in recent years (Fang et al., 2010; Krull
& MacKinnon, 2001; McNeish, 2017; Preacher, Zhang, &
Zyphur, 2011; Preacher, Zyphur, & Zhang, 2010; Zhang,
Zyphur, & Preacher, 2009). According to the literature
review of empirical multilevel mediation studies by

McNeish (2017), the most frequently used multilevel med-
iation model is the 2-1-1 [i.e., 2 (independent at Level 2)–1
(mediator at Level 1)–1 (dependent at Level 1)] mediation
model in which the only independent variable X is assessed
at level 2 of a two-level model (see Figure 1). The second
most frequently used model is the 1-1-1 mediation model in
which the independent variable X, the mediator M, and the
dependent variable Y are all measured at level 1 of a two-
level hierarchy. The purpose of this research was to com-
pare different methods in the analyses of multilevel media-
tion and to make recommendations in choosing the most
suitable method for the certain specific condition.

LITERATURE REVIEW

Mediation analysis is a statistical approach used to under-
stand how an independent variable X affects a dependent
variable Y through a mediator M. For the analysis of simple
mediation models, most researchers recommend the use of
the bootstrap method, the distribution of the product
method, the Monte Carlo method and the Bayesian method
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(see more details below). All these methods analyze the
mediating effect by obtaining the asymmetric interval esti-
mates of âb̂; an interval not including zero implies
a significant mediating effect. The advantage this approach

is that we do not have to assume the distribution of âb̂ in
the mediation analyses to be normally distributed (Hayes &
Scharkow, 2013; MacKinnon, Lockwood, & Williams,
2004; Yuan & MacKinnon, 2009).

Various analytical methods have been compared in pre-
vious research. With the 2-1-1 multilevel mediation based
on normal data, Pituch, Stapleton, and Kang (2006) com-
pared the performance of several methods including the
symmetric interval method, the empirical-M test, the para-
metric percentile residual bootstrap method, and the bias-
corrected parametric percentile residual bootstrap method.
The findings showed that the bias-corrected parametric
percentile residual bootstrap method performed the best
statistically, closely followed by the empirical-M test.
Specifically, the bias-corrected parametric percentile resi-
dual bootstrap method had the most balanced confidence
intervals and the greatest power. The empirical-M test had
a power that was similar to that of the bias-corrected para-
metric percentile residual bootstrap method, but empirical-
M test had a slightly worse performance in the balance of
confidence intervals. The symmetric interval method had
the worst performance among all methods.

Further comparisons on different methods were con-
ducted in two other studies. In Pituch and Stapleton’s
(2008) simulation study, the performance of the above
four methods was further compared in a 2-1-1 multilevel
mediation model with non-normal data. The results were
consistent with those in the earlier research. In another
simulation study, McNeish (2017) compared the perfor-
mance of the Monte Carlo method and the distribution of
the product method in estimating the 2-1-1 multilevel med-
iation. He found that these two methods had similar power
and interval coverage.

The above three comparison studies (McNeish, 2017;
Pituch & Stapleton, 2008; Pituch et al., 2006), however,
might have several severe limitations that have to be

addressed in further studies. First, these comparison studies
did not include the Bayesian method, which has attracted
increasing research attention in recent years. Simulation
studies have shown that the Bayesian method, the bootstrap
method and the distribution of the product method had
similar performance when used to estimate simple media-
tion model and moderated mediation models (Biesanz,
Falk, & Savalei, 2010; Chen, Choi, Weiss, & Stapleton,
2014; Fang & Zhang, 2012; Miočević, MacKinnon, &
Levy, 2017; Wang & Preacher, 2015; Yuan &
MacKinnon, 2009), suggesting that the Bayesian method
might also be useful for multilevel mediation effect studies.
To address such a possibility, therefore, the current study
would compare the performance of the Bayesian method
(non-informative priors, informative priors), the Monte
Carlo method, the distribution of product method, and the
parametric residual bootstrap method (bias-uncorrected,
bias-corrected) in a 2-1-1 mediation model.

Second, few research guidelines are available to help
researchers select prior information in the multilevel med-
iation analysis. Recently, a simulation study by Miočević
et al. (2017) examined how the power in detecting the
mediating effect in simple mediation model changed with
a gradual increase in the variance of normal prior distribu-
tion in the regression coefficient a or b. They found that
a decrease in the variance led to an increase in power in
some sampling conditions. However, their prior mean was
set at the true value and the power was the only perfor-
mance indicator being compared. In our present research,
Miočević et al.’s study would be extended to examine the
impact of a normal prior to a 2-1-1 random-slope mediation
model.

Third, the previous analyses with the 2-1-1 mediation
model had serious limitations in the model set up.
Specifically, the second part of the mediating effect (b,
the effect of M on Y) was not estimated properly in the
mediation model (Pituch & Stapleton, 2008; Pituch et al.,
2006; see Figure 1a). This effect could be separated into
two parts, one related to the between-group level (b), and
the other to the within-group level (r10) (see Figure 1b)

FIGURE 1 Development of the 2-1-1 mediation model. Note. 2-1-1 mediation, the three numbers represent the levels of independent variable, the
mediation variable and the dependent variable in succession
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(Preacher et al., 2011, 2010; Zhang et al., 2009). A new
multilevel mediation model (see Figure 1b) is thus neces-
sary to reexamine the methods in Pituch et al.’s mediation
analyses.

It is further noted that Pituch et al.’s (2006, 2008) and
McNeish’s (2017) studies used a 2-1-1 mediation model
with a fixed slope, which did not reflect the general multi-
level mediation models more commonly used. That is, the
2-1-1 multilevel mediation model with a random slope
should be superior to their 2-1-1 multilevel mediation
model with a fixed slope, unless the random slope variances
so happen to be exactly zero. Specifically, in the current
study, we would use the 2-1-1 multilevel mediation model
with a random slope instead.

Fourth, in Pituch et al.’s (2006, 2008) and McNeish’s
(2017) studies, their performance indicator was the confi-
dence interval only, and the point estimate of the mediating
effect was not examined. The point estimate is still useful
because it is important and easy to understand (e.g., see
reports of both point and interval estimates in mediating
analyses in Fang & Zhang, 2012; Yuan &MacKinnon, 2009).

In summary, the present research had two major contribu-
tions. Firstly, we would make a comprehensive comparison
of the six methods discussed above, in which both point and
interval estimates would be examined in a 2-1-1 random-
slope mediation model. Secondly, we would investigate the
impact of the prior distribution in a 2-1-1 random-slope
mediation model using several normal prior distributions.

In this article, we would first give a brief introduction of
the 2-1-1 multilevel mediation model with a random slope
(see Figure 1b) and would then describe the six methods in
analyzing multilevel mediation models. We would present
the design of the three simulations, followed by their
respective results. To help applied researchers in using
these methods, we would give an empirical example to
illustrate ways of selecting priors in a Bayesian analysis
with existing prior information and to facilitate the inter-
pretation of the results so obtained. In the discussion sec-
tion at the end, we would conclude with recommendations
for practical applications of multilevel mediation analysis.

MULTILEVEL MEDIATION MODEL

In the 2-1-1 multilevel mediation model, a level-2 antece-
dent influences a level-1 mediator, which in turn affects
a Level-1 outcome, as described below,

Level 1 : Mij ¼ βM0j þ εijðMÞ; (1a)

Level 2 : βM0j ¼ r00ðMÞ þ aXj þ μ0jðMÞ; (1b)

which represent the effect of the level-2 independent vari-
able Xj on the level-1 mediator variable Mij, with subscripts
i and j refer to individuals (e.g., employee) and level-2 units
(e.g., company), respectively, and r00 is the intercept for
Mij, a is the effect Xj on Mij, εij and μ0j are the level-1 and
level-2 residuals, respectively. The remainder of the multi-
level mediation model relating to the dependent variable Yij
is represented by the following equations,

Level 1 : Yij ¼ βY0j þ βY1j Mij �M :j

� �þ εijðYÞ; (2a)

Level 2 : βY0j ¼ r00ðYÞ þ c0Xj þ bM :j þ μ0jðYÞ; and (2b)

Level 2 : βY1j ¼ r10 þ μ1j: (2c)

The coefficient b now indicates the effect of Mij on Yij at
level 2 only, while the coefficient r10 represents the effect
of Mij on Yij at level 1 only. As Xj is constant within a given
group, variation in Xj cannot influence individual differ-
ences within a group. Thus, the effect of Xj could occur at
level 2 only, and the mediating effect of Xj on Yij through
Mij could take place at level 2 only. The mediating effect is
indicated as ab (Preacher et al., 2010; Zhang et al., 2009).
Furthermore, μ1j is the residual of Level-2 slope and βY1j is
a random slope. Specifically, a 2-1-1 multilevel mediation
model with a random slope (see Figure 1b and Equations 1
and 2) will be used in the current study.

METHODS OF MULTILEVEL MEDIATION
ANALYSES

Bayesian method (informative priors, non-informative
priors)

The Bayesian method treats parameters as random variables
and uses prior information on parameters to obtain the prior
distribution of parameters. The posterior distribution of
parameters is obtained by combining the observed data
with the prior distribution of parameters. In practice, the
Markov chain Monte Carlo (MCMC) method is used to
approximate the posterior distribution. The mediating effect
is computed as the product of the coefficients a and b at
each MCMC iteration, so as to obtain the empirical dis-
tribution of the mediating effect. The 95% credible interval
of the mediating effect is calculated from the values of the
2.5 and 97.5 percentiles in this distribution. The point
estimate of the mediating effect can be obtained using the
mean of this distribution as well (Fang & Zhang, 2012;
Miočević et al., 2017; Yuan & MacKinnon, 2009).
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A crucial step in the application of Bayesian method is
the selection of the appropriate prior distribution for the
model parameters. There are two main categories of priors,
which are typically discussed in terms of non-informative
and informative priors. Non-informative prior distributions
are usually used if no previous information on the para-
meters is available, and the selected prior distributions
should not influence the estimation of the model parameters
(Gelman, Carlin, Stern, & Rubin, 2004). An approximately
non-informative normal prior can be specified by setting
the prior mean to zero and prior variance to 103 or even
larger (Miočević et al., 2017). Informative prior distribu-
tions incorporate a great deal of the certainty information
about the value of the model parameters into the mediation
analysis. They can improve the efficiency of estimates
when the sample size is small or when the sampling error
is large (Depaoli & Clifton, 2015; Yuan & MacKinnon,
2009). Bayesian methods are divided into the Bayesian
method with non-informative priors, and the Bayesian
method with informative priors.

Sensitivity analysis is helpful in determining how robust
the final model results are when priors are modified (van de
Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli,
2017). This provides a better understanding of the role of
the priors in the analysis. Instability of results through
sensitivity analysis (e.g., a certain parameter is particularly
sensitive to prior settings) will suggest that this prior may
be mis-specified and have to be reconsidered. Sensitivity
analysis is done after the model has been estimated. It is
especially important for small sample research, and it
remains a useful practice even with large samples
(Miočević et al., 2017; van de Schoot et al., 2017).

Parametric residual bootstrap method
(bias-uncorrected, bias-corrected)

For multilevel models, there are, in principle, two general
methods that could be used to resample the data—boot-
strapping of cases or bootstrapping of residuals. Generally,
bootstrapping of residuals preserves more effectively the
structure of multilevel data (Pituch & Stapleton, 2008;
Pituch et al., 2006), and for that reason, it would be used
in the present study.

The parametric percentile residual bootstrap method
which we used in the current study included three steps.
First, initial parameter estimates and fitting Equations 1 and
2 were obtained by analyzing the multilevel mediation with
the original data set. Second, residual sampling values ε�ij,
μ�0j and μ�1j were generated from the normal distribution of

residuals εij, μ0j and μ1j. Then, ε
�
ij, μ

�
0j and μ�1j were drawn

from the fitting Equations 1 and 2 to get the bootstrap data

set ðXj;M�
ij ; Y

�
ijÞ. Parameter estimates â and b̂ were obtained

by analyzing the multilevel mediation with the bootstrap
data set. Third, we repeated the earlier step until we had

obtained N parameter estimates â and b̂, which were multi-
plied to produce an empirical sampling distribution for the
mediating effect. The 95% confidence interval would be
calculated from the values at 2.5 and 97.5 percentiles in this
distribution. The point estimate of the mediating effect
could be obtained using the mean of this distribution as
well (Pituch & Stapleton, 2008; Pituch et al., 2006).

The bias-corrected parametric percentile residual boot-
strap method would make an adjustment to the percentiles
used to form the confidence limits based on the degree of
bias in the estimation of the mediating effect. A bias arises
when the true value of the parameter does not correspond to
the median of the distribution of estimates. We made this
adjustment by first finding the z0 in the standard normal
distribution that corresponded to the percentile position of

â0b̂0, the point estimate of the mediating effect calculated
in the original data, as relative to the N bootstrap estimates
previously obtained. Furthermore, we computed an
adjusted critical Z score which was equal to 2Z0 þ Zα=2
and we identified the percentile in the standard normal
distribution associated with this adjusted critical Z score.
The upper limit of the confidence interval for the mediating
effect was then determined by finding the bootstrap esti-

mate of âb̂ that corresponded to this percentile. Similarly,
for the lower limit of the confidence interval, we computed
2Z0�Zα=2 and determined the bootstrap estimate at this
corresponding percentile (2008; Pituch et al., 2006).

Monte Carlo method

The Monte Carlo (MC) method involved the generation of
a sampling distribution âb̂ using the model estimates and
their asymptotic variances and covariance. These estimated
values were used to define a multivariate normal (MVN)
distribution

a�

b�

� �
,MVN

â
b̂

� �
;

σ̂2a
σ̂ab

σ̂ab
σ̂2b

� �� �
(3)

with σ̂ab typically set to 0. Using the parametric assumption

in (3), a sampling distribution of âb̂ was formed by repeat-
edly generating a� and b�, which were multiplied to obtain

â�b̂�. The 95% confidence interval was then calculated
from the values of the 2.5 and 97.5 percentiles in this
distribution. The point estimate could be obtained using
the mean of this distribution as well. The advantage of
the Monte Carlo method is that the raw data are not
required and researchers only have to provide the estimates

of the mediation paths (â and b̂) and the standard errors of
these paths (MacKinnon et al., 2004; Preacher & Selig,
2012).
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Distribution of the product method

The distribution of the product (DP) method forms
a confidence interval for âb̂ by assuming that the sampling

distributions for â and b̂ are both normal, and the distribu-
tion of the product of two normal variables is used
(Meeker, Cornwell, & Aroian, 1981). In the current study,
the distribution of the product method was obtained using
the PRODCLIN program (MacKinnon, Fritz, Williams, &
Lockwood, 2007). When the PRODCLIN program is used
to estimate the confidence interval of the mediating effect,

researchers have to provide the â and b̂ along with their
standard errors only, whereas the raw data are not
necessary.

STUDY 1

The purpose of the first simulation study was to investigate the
performance of the above-mentioned six multilevel mediation
analysis methods in the estimation of the 2-1-1 multilevel
mediation with a random slope. We simultaneously considered
the following factors in the simulation study: (a) the level-2
sample size; (b) the level-1 sample size; (c) the mediating effect
size, and (d) the analytic method.

First, we systematically manipulated the condition of
sample size by varying both the number of clusters and
the number of participants within each cluster, with the
number of clusters in the study ranging from 10 to 100
(10, 20, 30, 50, 100) and the sample size within clusters in
two conditions: 10 and 20. The values selected were similar
to those used in previous multilevel simulation studies
(Krull & MacKinnon, 2001; McNeish, 2017; Pituch &
Stapleton, 2008, Pituch et al., 2006, Pituch, Whittaker, &
Stapleton, 2008).

Second, we limited the sizes of mediating effects to
three null and three non-null conditions. For the null con-
ditions, ab ¼ 0 conditions were obtained by setting (a)
a ¼ b ¼ 0; (b) a= 0.39, b= 0; (c) a= 0, b= 0.59. For the
non-null effect size, we used ab effects equal to 0.02
(a ¼ b ¼ 0:14), 0.15 (a ¼ b ¼ 0:39), and 0.35
(a ¼ b ¼ 0:59). These values denoted a small, a medium,
and a large mediating effect respectively, as used in pre-
vious studies (Cohen, 1988; Fang & Zhang, 2012;
MacKinnon et al., 2004; Yuan & MacKinnon, 2009).

In addition, some parameter values in the model were held
constant throughout the simulation. Parameter c0 from
Equation 2 was fixed at the value of 0.1. Parameter r00 from
Equations 1 and 2 was fixed at the value of 0. Parameter r10
from Equation 2 was fixed at the value of 0.14. The residual
intraclass correlation was held constant at 0.2 for all condi-
tions. These values were also used in previous multilevel
stimulation studies (McNeish, 2017; Pituch et al., 2005,
2006, 2008).

In summary, a 2 (level 1 sample size) × 5 (level 2 sample
size) × 6 (size of the mediating effect) factorial design with
60 different conditions was used to evaluate the statistical
performance of the aforementioned six different methods in
analyzing the 2-1-1 multilevel mediation with a random
slope. In each of the conditions, 500 repetitions were com-
puted. The parametric residual bootstrap required 1000 boot-
strap samples for each repetition. The MC method required
5000 simulated parameter sets (Hayes & Scharkow, 2013).
The distribution of the product method was based on the
PRODCLIN program (MacKinnon et al., 2007). The
Bayesian method required a total of 1000 burn-in iterations
and 10,000 after burn-in iterations so as to generate the
Markov chains for the model parameters. The Bayesian
method was implemented in WinBUGS. Regression coeffi-
cients a and b were assigned normal prior distribution with
the prior mean equaled to the true value of a and
b respectively, and the prior variance was equal to 10−2

(Bolin, Finch, & Stenger, 2018; Fang & Zhang, 2012). For
all of the other model parameters, non-informative priors
were used. More specifically, regression coefficients were
assigned normal priors with a mean 0 and a variance 106

(Fang & Zhang, 2012; Yuan & MacKinnon, 2009). Residual
variances were assigned inverse gamma priors with the shape
and inverse scale equaled to 10−3 (Fang & Zhang, 2012; Yuan
& MacKinnon, 2009).

The simulations were conducted in R (version 3.4.1) and
WinBUGS 14. All point estimates of the mediating effect
were compared based on the relative mean square error
(RMSE), and all interval estimates of the mediating effect
were compared on their power, Type I error rate, interval
width, and interval imbalance.

SIMULATION RESULTS

RMSE

With MSE0 denoting the mean square error (MSE) of the
mediating effect estimation on the basis of the parametric
percentile residual bootstrap method, the RMSE of an esti-
mate of the mediated effect was defined as MSE=MSE0, in
which MSE denoted the MSE of the estimate based on the
specific method. The MSE was examined in the equation

Eðâb̂� abÞ2, in which ab denoted the true value of the

mediating effect, and âb̂ denoted the point estimate of the
mediating effect. The results are shown in Table 1.

The influence of the several factors on the relative mean
square error (RMSE) was examined with the analysis of
variance (ANOVA). These factors included five types of the
level-2 sample size, two types of the level-1 sample size,
five types of the method and two types of the mediating
effect size (zero or nonzero). The results of ANOVA
showed that the interaction of method and level-2 sample
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size was statistically significant, F(16, 200) = 3.0, p < .001,
η2p = .19. Across all other parameters, the RMSEs based on

the Bayesian method with informative priors were signifi-
cantly smaller than the other methods. There was no statis-
tically significant difference among the other methods.

Power

The power refers to the percentage of replications in which
the estimated confidence intervals for the mediating effect
did not contain 0 when a true mediating effect existed.
Power closer to 1 would be more desirable. The results
are shown in Table 2. An ANOVA was conducted that
included five types of the level-2 sample size and six
types of the method. Results showed that the interaction
of the method and the level-2 sample size was not signifi-
cant, F(20, 150) = 0.28, p = 1.0, η2p = .04. The main effect
of the method was significant, F(5, 150) = 2.8, p = .02, η2p

= .08. The Bayesian method with informative priors had the
largest power among all the methods. There was no statis-
tically significant difference among the other methods.

Type I error rate

The Type I error rate referred to the percentage of replica-
tions in which the estimated confidence intervals for the
mediating effect did not contain 0 when a true mediating
effect was zero. The nominal rate of the Type I error was
set at 0.05 for all methods. The results are shown in Table
2. Type I error rates outside the Bradley’s (1978) robust-
ness criterion range (0.025, 0.075), indicating reasonably
close to the 0.05 nominal rate, are indicated in bold
numbers in Table 2.

Similar to the analysis with power, an ANOVA was
conducted that included the level-2 sample size and the
method. Results showed that the interaction of the

TABLE 1
Relative Mean Square Error (RMSE� 100%) of the Point Estimates of the Mediating Effect in Study 1

a ¼ b ¼ 0 a ¼ 0:39; b ¼ 0 a ¼ 0; b ¼ 0:59 a ¼ b ¼ 0:14 a ¼ b ¼ 0:39 a ¼ b ¼ 0:59

N1 10 20 10 20 10 20 10 20 10 20 10 20

N2 = 10
MC 76.8 182.4 91.8 90.6 101.3 105.2 97.6 118.4 80.0 100.3 76.8 98.4
DP 91.6 102.5 87.8 97.0 79.5 93.5 100.6 88.6 83.9 92.9 80.0 94.5
Boot 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bayinf 0.0 0.0 0.5 0.5 2.2 3.5 0.5 0.6 0.9 1.5 1.1 1.3
Baynon 72.1 157.9 109.3 104.3 91.5 105.7 129.8 87.1 77.1 85.3 88.9 99.5

N2 = 20
MC 106.7 109.9 88.9 85.9 99.3 111.1 96.1 90.9 103.0 125.0 119.9 97.3
DP 97.4 106.5 91.8 90.9 78.7 81.7 80.5 104.8 91.9 112.3 102.9 78.1
Boot 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bayinf 0.3 0.3 2.4 2.1 9.6 14.1 2.6 3.0 5.6 5.4 4.7 4.2
Baynon 88.8 86.8 94.7 93.5 94.9 126.6 73.2 119.0 104.0 123.1 102.4 94.5

N2 = 30
MC 82.8 86.1 118.3 87.0 117.5 98.7 97.5 93.9 108.9 98.1 110.0 102.0
DP 105.9 124.4 96.5 99.0 101.6 104.7 88.5 80.1 108.1 100.4 115.5 73.4
Boot 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bayinf 0.9 1.2 3.9 4.3 19.1 20.5 6.0 6.6 9.2 8.9 8.8 7.1
Baynon 97.9 129.5 96.4 97.7 90.6 108.8 99.8 93.4 102.0 95.9 118.3 98.0

N2 = 50
MC 102.2 97.7 105.3 100.0 84.4 82.8 104.4 97.6 98.3 110.8 95.4 101.0
DP 117.1 104.7 99.9 102.2 80.8 94.8 104.5 88.2 99.3 99.6 104.1 98.9
Boot 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bayinf 3.6 4.5 9.8 10.4 25.2 29.5 13.1 15.6 14.9 15.9 14.2 17.5
Baynon 98.5 134.7 101.3 110.7 85.2 86.3 85.8 91.4 106.6 95.6 108.0 104.9

N2 = 100
MC 79.7 108.3 107.6 98.1 77.0 90.3 100.9 92.6 94.9 99.7 108.3 91.7
DP 107.8 89.2 102.4 122.2 84.1 92.9 107.5 96.8 117.9 92.5 109.6 108.1
Boot 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bayinf 8.5 17.2 26.2 26.8 41.2 56.4 29.7 29.2 33.5 31.7 35.1 30.1
Baynon 92.4 112.1 115.2 116.9 80.7 94.2 90.4 97.2 108.2 101.4 94.3 88.7

Note. Bias-corrected and bias-uncorrected parametric percentile residual Bootstrap method have the same RMSE. MC, DP, Boot, Bayinf, and Baynon
refer to the Monte Carlo method, the distribution of the product method, the parametric percentile residual Bootstrap method, the Bayesian method with
informative priors, and the Bayesian method with non-informative priors, respectively.

N1 = sample size; N2 = Number of clusters; a, b = regression coefficients.

596 FANG ET AL.



TABLE 2
Power, Type I Error Rate, 95% Interval Width and Interval Imbalance for the Mediating Effect in Study 1

a ¼ b ¼ 0 a ¼ 0:39; b ¼ 0 a ¼ 0; b ¼ 0:59 a ¼ b ¼ 0:14 a ¼ b ¼ 0:39 a ¼ b ¼ 0:59

Method Error
Width
(imban) Error

Width
(imban) Error

Width
(imban) Power

Width
(imban) Power

Width
(imban) Power

Width
(imban)

N1 = 10, N2 = 10
MC .006 .526(1) .030 .783(−1) .034 .748(−3) .010 .583(−1) .086 .86(3) .266 1.127(19)
DP .006 .417(−1) .038 .675(−3) .034 .625(5) .014 .457(6) .122 .764(38) .290 1.073(23)
Boot .002 .590(1) .028 .877(0) .020 .781(−2) .006 .646(−1) .068 .924(15) .230 1.270(16)
BCBoot .002 .631(1) .056 .914(4) .048 .822(−8) .012 .683(1) .132 .962(24) .320 1.306(12)
Bayinf .000 .043(0) .000 .155(0) .000 .211(0) .002 .081(0) 1.00 .201(0) 1.00 .304(0)
Baynon .000 .600(0) .028 .883(2) .010 .811(1) .010 .645(1) .050 .959(11) .176 1.287(17)

N1 = 10, N2 = 20
MC .002 .234(−1) .032 .438(4) .024 .394(−2) .018 .277(2) .266 .465(20) .676 .697(5)
DP .004 .180(0) .048 .405(−2) .028 .361(−2) .014 .233(16) .302 .445(32) .664 .680(9)
Boot .002 .243(1) .030 .448(5) .028 .396(0) .010 .301(1) .200 .489(16) .592 .740(10)
BCBoot .008 .260(0) .056 .459(−6) .052 .410(−2) .030 .318(5) .310 .507(10) .662 .755(4)
Bayinf .000 .039(0) .002 .145(−1) .002 .186(−1) .014 .076(1) 1.00 .187(1) 1.00 .281(0)
Baynon .000 .239(0) .042 .464(−3) .022 .399(1) .004 .282(2) .240 .498(15) .608 .705(17)

N1 = 10, N2 = 30
MC .002 .147(−1) .056 .319(−4) .054 .301(−7) .026 .189(1) .480 .353(18) .844 .534(−1)
DP .004 .110(0) .054 .310(−1) .048 .281(−4) .024 .159(0) .568 .355(15) .874 .531(9)
Boot .002 .150(−1) .060 .339(−8) .046 .294(3) .020 .194(−1) .434 .374(20) .822 .545(4)
BCBoot .010 .161(1) .086 .343(−5) .078 .302(9) .054 .204(13) .544 .385(13) .860 .554(−3)
Bayinf .000 .036(0) .000 .141(0) .004 .173(0) .058 .070(2) 1.00 .178(1) 1.00 .268(0)
Baynon .000 .150(0) .034 .232(3) .036 .301(−8) .008 .191(−2) .476 .376(8) .858 .547(4)

N1 = 10, N2 = 50
MC .002 .084(−1) .060 .236(−4) .058 .208(9) .062 .123(3) .754 .270(14) .964 .401(5)
DP .004 .066(0) .058 .229(−7) .038 .208(−5) .072 .113(35) .798 .260(9) .968 .394(16)
Boot .002 .088(0) .048 .244(−8) .086 .213(5) .052 .125(2) .766 .275(12) .974 .407(17)
BCBoot .004 .094(1) .068 .247(−6) .092 .216(4) .102 .131(20) .802 .281(5) .978 .411(14)
Bayinf .000 .031(0) .000 .131(0) .014 .153(−3) .124 .064(2) 1.00 .160(0) 1.00 .244(0)
Baynon .002 .088(−1) .046 .245(−1) .054 .218(−1) .036 .126(5) .750 .274(10) .966 .402(3)

N1 = 10, N2 = 100
MC .000 .042(0) .050 .160(13) .040 .145(2) .148 .073(16) .962 .184(2) 1.00 .274(11)
DP .006 .032(1) .046 .159(10) .060 .143(−4) .180 .070(−4) .946 .182(8) 1.00 .275(−5)
Boot .002 .042(−1) .044 .163(12) .076 .143(−8) .168 .075(12) .974 .185(−2) .998 .279(0)
BCBoot .004 .044(0) .048 .163(12) .084 .144(4) .244 .078(12) .976 .187(−3) .998 .280(−3)
Bayinf .000 .022(0) .004 .110(2) .022 .121(−1) .368 .051(5) 1.00 .136(2) 1.00 .203(1)
Baynon .004 .043(−2) .058 .161(14) .056 .145(−4) .146 .074(23) .962 .185(8) 1.00 .277(6)

N1 = 20, N2 = 10
MC .008 .508(2) .038 .751(5) .028 .679(−2) .012 .573(−1) .114 .809(14) .31 1.113(17)
DP .004 .394(0) .054 .666(1) .024 .592(1) .016 .455(−2) .138 .754(39) .294 1.039(45)
Boot .002 .543(1) .014 .887(−3) .012 .691(−2) .008 .610(2) .062 .913(10) .212 1.285(10)
BCBoot .002 .581(1) .034 .919(−5) .030 .727(−1) .016 .648(3) .104 .947(28) .294 1.318(6)
Bayinf .000 .042(0) .000 .154(0) .000 .207(0) .002 .080(0) 1.00 .202(0) 1.00 .300(0)
Baynon .006 .571(−1) .024 .869(−2) .008 .762(4) .000 .627(0) .052 .923(12) .186 1.285(18)

N1 = 20, N2 = 20
MC .002 .216(1) .052 .422(−2) .032 .363(2) .014 .256(1) .302 .464(19) .61 .656(18)
DP .002 .166(1) .062 .398(1) .024 .326(2) .016 .220(17) .302 .456(20) .696 .663(12)
Boot .000 .226(0) .042 .450(1) .036 .368(2) .014 .263(2) .256 .475(16) .582 .702(13)
BCBoot .002 .239(−1) .078 .459(−1) .054 .379(5) .022 .279(−1) .348 .490(11) .640 .713(3)
Bayinf .000 .038(0) .000 .146(0) .002 .185(1) .006 .073(2) 1.00 .187(0) 1.00 .281(−1)
Baynon .000 .229(0) .050 .443(−5) .036 .379(−8) .014 .273(−1) .210 .479(24) .626 .709(10)

N1 = 20, N2 = 30
MC .000 .137(0) .056 .318(8) .032 .271(−8) .022 .175(4) .456 .348(19) .842 .524(5)
DP .010 .105(3) .058 .314(5) .048 .255(−2) .02 .154(15) .526 .342(21) .832 .519(12)
Boot .000 .141(0) .058 .334(−5) .054 .276(−3) .022 .185(−1) .452 .365(16) .840 .539(7)
BCBoot .008 .150(−2) .092 .339(−12) .088 .282(−10) .064 .195(17) .548 .374(7) .854 .547(−1)
Bayinf .000 .035(0) .000 .139(0) .014 .170(5) .048 .070(1) 1.00 .176(0) 1.00 .263(0)

(Continued )
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method and the level-2 sample size was not significant,
F(20, 150) = 0.25, p = 1.0, η2p = .03. The main effect of
method was significant, F(5, 150) = 9.7, p < .001, η2p
= .24. The Bayesian method with informative priors had
the lowest rate of the Type I error among all the meth-
ods. Fang and Zhang (2012) and Miočević et al. (2017)
also suggested that the Bayesian method with informa-
tive priors had almost no Type I error regardless of the
sample size and the sizes of mediating effects in single-
level mediation analyses. The Bias-corrected parametric
percentile bootstrap method had the highest rate of Type
I error among all the methods. There was no statistically
significant difference among the other methods.

Interval width

The interval width was defined as the difference between
the upper confidence limit and the lower confidence limit,
with smaller interval width indicating a greater precision of
the estimate. The results are shown in Table 2. An ANOVA
was conducted that included the level-2 and the level-1
sample size, the method, and whether the mediating effect
was zero or nonzero. Results showed that the interaction of
the method and the level-2 sample size was significant, F
(20,240) = 5.4, p < .001, η2p = .31. When the sample sizes of
level-2 were 10, 20 and 30, the interval widths of the
Bayesian method with informative priors were smaller
than all other methods. When the sample size of level-2

was 10, the interval widths of distribution of the product
method were smaller than the parametric percentile residual
bootstrap method, the bias-corrected parametric percentile
residual bootstrap method, and the Bayesian method with
non-informative priors.

Interval imbalance

The interval imbalance was defined as the difference between
the numbers of true values that fell on the right side of the
interval against those on the left side of it; an imbalance
closer to zero was considered more desirable. The results
are shown in Table 2. Similar to the analysis with interval
width, an ANOVA was conducted. Results showed that the
interaction of the method and the level-2 sample size was
significant, F(5, 240) = 8.0, p < .001, η2p = .14. When the
mediating effect size was nonzero, across all other para-
meters, the interval imbalance of the Bayesian method with
informative priors was smaller than that of other methods,
and the interval imbalance of the distribution of the product
method was greater than that with the other methods. There
was no statistically significant difference between the other
methods.

In summary, the results of Study 1 suggested that the
Bayesian method with an accurate prior information was
an excellent way to decrease the RMSE, the interval
width, and the imbalance, as well as to increase the
power. However, getting an accurate prior information

TABLE 2
(Continued)

a ¼ b ¼ 0 a ¼ 0:39; b ¼ 0 a ¼ 0; b ¼ 0:59 a ¼ b ¼ 0:14 a ¼ b ¼ 0:39 a ¼ b ¼ 0:59

Method Error
Width
(imban) Error

Width
(imban) Error

Width
(imban) Power

Width
(imban) Power

Width
(imban) Power

Width
(imban)

Baynon .006 .143(−1) .052 .328(0) .040 .284(4) .020 .181(1) .438 .358(16) .840 .540(5)
N1 = 20, N2 = 50

MC .000 .080(0) .050 .230(7) .034 .196(1) .06 .118(3) .746 .266(9) .974 .386(7)
DP .000 .060(0) .042 .233(−3) .072 .193(6) .088 .107(36) .746 .260(15) .968 .386(12)
Boot .000 .081(0) .050 .239(−1) .058 .201(−5) .048 .119(9) .716 .270(9) .976 .397(6)
BCBoot .004 086(0) .072 .240(−6) .086 .203(−7) .100 .125(32) .764 .275(0) .982 .400(4)
Bayinf .000 .030(0) .000 .129(0) .010 .148(3) .162 .060(1) 1.00 .158(−1) 1.00 .238(1)
Baynon .002 .082(1) .038 .239(−1) .040 .204(−6) .044 .117(5) .712 .264(5) .972 .400(−5)

N1 = 20, N2 = 100
MC .000 .039(0) .056 .159(2) .040 .135(2) .186 .072(13) .964 .179(−3) 1.00 .271(3)
DP .000 .028(0) .058 .159(−3) .056 .133(4) .204 .068(35) .974 .179(11) 1.00 .270(10)
Boot .002 .039(1) .036 .162(−8) .074 .131(−5) .150 .072(19) .960 .181(14) 1.00 .273(−5)
BCBoot .010 .041(1) .042 .162(−9) .096 .131(−8) .240 .074(15) .966 .183(6) 1.00 .274(−11)
Bayinf .000 .022(0) .008 .111(0) .034 .114(1) .382 .051(2) 1.00 .133(2) 1.00 .200(−1)
Baynon .000 .039(0) .054 .161(9) .056 .136(0) .150 .073(27) .962 .181(9) 1.00 .272(10)

Note. Values in bold are outside Bradley (1978) robustness criteria. MC, DP, Boot, BCBoot, Bayinf, and Baynon refer to the Monte Carlo method, the
distribution of the product method, the parametric percentile residual Bootstrap method, the bias-corrected parametric percentile residual Bootstrap method,
the Bayesian method with informative priors, and the Bayesian method with non-informative priors, respectively. Imban denotes the interval imbalance,
shown in brackets. Type I error rates outside the Bradley’s (1978) robustness criterion range (0.025, 0.075) indicating reasonably close to the 0.05 nominal
rate, are indicated in bold numbers.

N1 = sample size; N2 = Number of clusters; a, b = regression coefficients.

598 FANG ET AL.



might be difficult in practice. Studies 2 and 3 were
designed to examine the influence of misspecification
of the normal prior for a or b coefficients in estimating
the 2–1-1 multilevel mediation with a random slope.

STUDY 2

Study 2 examined the influence of the misspecification
of prior variance on the regression coefficients a or b in
estimating the 2–1-1 multilevel mediation with
a random slope using the Bayesian method. As the
Bayesian method has unique benefits in small samples
(Bolin et al., 2018; McNeish, 2017; Miočević et al.,
2017), the number of clusters was set at 10 and 20
and the sample size within clusters was set at 10 in
Study 2. Populations with the following values for para-
meters a and b were simulated: a ¼ b ¼ 0:14, 0.39,
0.59, other parameter settings were the same as in
Study 1. Random samples were drawn from each of
the populations. The point estimation and the interval
estimation for the mediating effect were calculated with
the different priors for the regression coefficients a and
b. We fixed the prior mean for regression coefficients
a and b as the true value but varied the prior variance.
Ten variance conditions were evaluated in the study:
five where the prior variance for the coefficient b was
set to 10−2 and the prior variance for the coefficient
a varied (10−1, 100, 101, 102, 103), and five where the
prior variance for the coefficient a was set to 10−2 and
the prior variance for the coefficient b varied (10−1, 100,
101, 102, 103). These values were also used in the
Miočević et al. (2017) study.

In summary, a 2 (level 2 sample size) × 3 (size of the
mediating effect) × 10 (prior variance conditions) fac-
torial design with 60 different conditions was used to
evaluate the statistical performance of misspecification
of the prior variance in the analyses of the 2-1-1 multi-
level mediation with a random slope. In each condition,
500 repetitions were conducted. The Bayesian method
required a total of 1000 burn-in iterations and 10000
after burn-in iterations so as to generate the Markov
chains for the model parameters. The simulations were
conducted in R (version 3.4.1) and WinBUGS 14. All
point estimates of the mediating effect were compared
based on their relative mean square error (MSE0 denotes
the mean square error of the mediating effect estimation
when the prior variance is 103), and all interval esti-
mates of the mediating effect were compared based on
their power, the interval width, and the interval
imbalance.

SIMULATION RESULTS

RMSE

The results are shown in Table 3. The influence of the
factors on RMSE was examined with ANOVA. These fac-
tors included five types of prior variance, two types of
level-2 sample size, and three types of mediating effect
size. Results showed no statistically significant interaction
but two significant main effects. Increasing the prior var-
iance would increase the RMSE, F(4, 30) = 74.77, p < .001,
η2p = .91, and increasing sample size would increase the

RMSE, F(1, 30) = 10.33, p = .003, η2p = .26.

Power

The results are shown in Table 4. First, similar to analyses
with the RMSE, an ANOVA was conducted. Results
showed no statistically significant interaction but two sig-
nificant main effects. Increasing the effect size would
increase the power, F(2, 30) = 82.07, p < .001, η2p = 0.84,
and increasing the sample size would also increase the
power, F(1, 30) = 12.48, p = .001, η2p = .29.

Second, for small effects (a = b = 0.14), there was
almost no change in the power as a consequence of increas-
ing the prior variance (Table 4 and Figure 2). Third, for
medium and large effects (a = b = 0.39 and 0.59), an
increase in prior variance led to a smaller power, the
reduction in power was relatively slow when the prior
variance was greater than 100, but the power was still
greater than that of the Bayesian method with non-
informative priors (Table 4 and Figure 2). Finally, the

TABLE 3
Relative Mean Square Error (RMSE� 100%) of the Point Estimates

of the Mediating Effect in Study 2

a ¼ b ¼ 0:14 a ¼ b ¼ 0:39 a ¼ b ¼ 0:59

prior a = 0.14 b = 0.14 a = 0.39 b = 0.39 a = 0.59 b = 0.59

N1 = 10, N2 = 10
10−1 41.1 15.9 36.8 16.6 44.9 17.8
100 86.3 61.6 69.5 68.3 75.1 69.2
101 88.8 96.4 79.1 84.2 85.5 85
102 92.0 97.7 88.6 91.9 90.3 93.2
103 100 100 100 100 100 100

N1 = 10, N2 = 20
10−1 56.5 35.9 63.0 38.3 74.8 33.4
100 78.6 79.3 82.2 75.6 90 86.5
101 83.9 93.2 84.1 92.7 90.1 91.5
102 99.9 97.9 98.7 99.9 90.8 99.9
103 100 100 100 100 100 100

N1 = sample size; N2 = Number of clusters; a, b = regression
coefficients.
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t-test showed that the reduction of the power due to the
misspecification of the prior variance of b coefficient was
significantly greater than that of the coefficient a, t
(58) = 2.21, p = .031, d = 0.6.

Interval width and imbalance

The results of interval width are shown in Table 4. First,
similar to the analyses with the RMSE, an ANOVA was
conducted. Results showed no statistically significant interac-
tion but two significant main effects. Increasing effect size
would decrease the interval width, F(2, 30) = 41.56, p < .001,
η2p = .73, and increasing sample size would decrease the

interval width, F(1, 30) = 18.18, p < .001, η2p = .38. Second,

across all other parameters, an increase in the prior variance
would lead to a greater interval width, the increase in interval
width was relatively slow when the prior variance was greater

than 100, but the interval width was still smaller than that of
the Bayesianmethod with non-informative priors (Table 4 and
Figure 3). Third, the t-test showed that the increase in interval
width due to the misspecification of the prior variance of the
b coefficient was significantly greater than that of the coeffi-
cient a, t(58) = 3.23, p = .002, d = 0.86.

The results of interval imbalance are shown in Table 4.
Similar to the analyses with the RMSE, an ANOVA was
conducted. Results showed that there was no significant
effect with the interval imbalance.

STUDY 3

Study 3 examined the influence of the misspecification of
the prior mean on the regression coefficients a or b in
estimating the 2–1-1 multilevel mediation with a random

TABLE 4
Power, 95% Interval Width and Interval Imbalance for the Mediating Effect in Study 2

a ¼ b ¼ 0:14 a ¼ b ¼ 0:39 a ¼ b ¼ 0:59

Power
Width
(imban) Power

Width
(imban) Power

Width
(imban) Power

Width
(imban) Power

Width
(imban) Power

Width
(imban)

Prior a = 0.14 b = 0.14 a = 0.39 b = 0.39 a = 0.59 b = 0.59
N1 = 10, N2 = 10

10−1 0 .142(3) 0 .177(0) .628 .309(9) .350 .395(2) .928 .466(3) .808 .577(1)
100 0 .177(2) 0 .282(0) .460 .387(7) .240 .6(−7) .738 .577(10) .420 .865(2)
101 0 .178(8) 0 .313(2) .460 .400(7) .210 .658(4) .728 .585(1) .376 .981(9)
102 0 .184(2) 0 .317(3) .430 .400(6) .206 .692(14) .700 .592(6) .348 1.00(4)
103 0 .188(3) 0 .317(8) .394 .408(11) .198 .696(3) .66 .607(7) .326 1.03(14)

N1 = 10, N2 = 20
10−1 .012 .106(7) .02 .140(3) .874 .242(3) .542 .322(2) .998 .356(7) .926 .481(3)
100 .008 .12(10) .02 .175(5) .796 .266(8) .39 .405(0) .970 .393(5) .714 .596(−1)
101 .008 .12(8) .02 .186(5) .79 .266(7) .366 .420(2) .966 .393(3) .656 .617(9)
102 .008 .12(11) .02 .189(4) .772 .267(18) .364 .428(−2) .972 .396(4) .65 .627(7)
103 .008 .12(11) .02 .190(9) .746 .273(16) .350 .430(8) .972 .397(4) .638 .630(−3)

N1 = sample size; N2 = Number of clusters; a, b = regression coefficients.
Imban denotes the interval imbalance, shown in brackets.

FIGURE 2 Plot of the power as a function of the prior variance for the
regression coefficient in study 2. Note. (0.14,10) denotes a = b = 0.14 and
n2 = 10, etc.

FIGURE 3 Plot of the interval width as a function of the prior variance
for the regression coefficient in study 2. Note. (0.14,10) denotes a = b = 0.14
and n2 = 10, etc.
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slope using the Bayesian method. As there was almost no
change in the power for the small effects (a = b = 0.14) in
Study 2, populations with the following values for the
parameters a and b were simulated: a = b = 0.39 and
0.59, other parameter settings were the same as in Study
2. Random samples were drawn from each of the popula-
tions. The point estimates and interval estimates for the
mediating effect were calculated with the different priors
for the regression coefficients a and b. We varied both the
prior mean and the prior variance. Six mean conditions
were evaluated in the study. In one set, the prior mean for
the coefficient b was set to the true value and the prior
mean for the coefficient a was varied. Specifically, when
the true value was 0.59, the prior mean for the coefficient
a was set to 0.39 and 0.14; when the true value was 0.39,
the prior mean for the coefficient a was set to 0.14. In
another set, the prior mean for the coefficient a was set to
the true value and the prior mean for the coefficient b was
varied. Specifically, when the true value was 0.59, the prior
mean for the coefficient b was set to 0.39 and 0.14; when
the true value was 0.39, the prior mean for the coefficient
b was set to 0.14. Eight variance conditions were evaluated
in the study: three where the prior variance for the coeffi-
cient b was set to 10−2 and the prior variance for the
coefficient a was varied (10−1, 100, 101, 102), and three
where the prior variance for the coefficient a was set to
10−2 and the prior variance for the coefficient b was varied
(10−1, 100, 101, 102).

In summary, a 2 (level 2 sample size) × 2 (size of the
mediating effect) × 6 (prior mean conditions) × 8 (prior
variance conditions) factorial design with 192 different
conditions was used to evaluate the statistical performance
of the misspecification of the normal prior in analyzing the
2-1-1 multilevel mediation with a random slope. In each
condition, 500 repetitions were conducted. The Bayesian
method required a total of 1000 burn-in iterations and
10,000 after burn-in iterations so as to generate the
Markov chains for the model parameters. The simulations
were conducted in R (version 3.4.1) and WinBUGS 14. All
point estimates of the mediating effect were compared on
their relative mean square error (MSE0 denotes the mean
square error of the mediating effect estimation when the
prior variance is 102), and all interval estimates of the
mediating effect were compared on their power, the interval
width, and the interval imbalance.

SIMULATION RESULTS

RMSE

The results are shown in Table 5. The influence of several
factors on the RMSE was examined with ANOVA. These
factors included four types of prior variance, two types of
level-2 sample size, and three types of prior mean. Results

showed no statistically significant interactions but two sig-
nificant main effects. The sample size significantly affected
the RMSE, F(1, 24) = 10.9, p = .003, η2p = .34, with a larger
sample size resulting in a larger RMSE. The prior variance
significantly affected the RMSE, F(4, 24) = 21.25, p < .001,
η2p = .73, with a larger prior variance resulting in a larger

RMSE.

Power

The results are shown in Table 6. First, a comparison of the
results in Tables 6 and 4 showed that the misspecification
of the prior mean for the regression coefficients a or b led
to a smaller power. Second, the larger misspecification of
prior mean led to a greater reduction in the power when the
prior variance was less than 100. Specifically, when the true
value of the prior mean was 0.59, the power with the 0.14
prior mean was less than that when the prior mean was 0.39
(Table 6). Third, the increase in the prior variance led to the
greater power when the prior mean was set to 0.14 (Table
6). Fourth, a larger sample size would result in a higher
power. Finally, the t-test showed that the reduction of
power due to the misspecification of the prior information
of the b coefficient was significantly greater than that of the
coefficient a, t(46) = 6.45, p < .001.

Interval width and imbalance

The results of the interval width are shown in Table 6. First,
the results showed that the larger sample size resulted in the
smaller interval width. Second, the increase in the prior var-
iance led to the greater interval width when the prior mean
was misspecified (Table 6). Third, the t-test demonstrated that
the increase in the interval width due to themisspecification of
the prior information of the b coefficient was significantly
greater than that of the coefficient a, t(46) = 4.85, p < .001.

TABLE 5
Relative Mean Square Error (RMSE� 100%) of the Point Estimates

of the Mediating Effect in Study 3

a ¼ b ¼ 0:39 a ¼ b ¼ 0:59 a ¼ b ¼ 0:59

prior a = 0.14 b = 0.14 a = 0.14 b = 0.14 a = 0.39 b = 0.39

N1 = 10, N2 = 10
10−1 62.7 29.5 81.5 50.3 51.2 60.3
100 95 66.4 87 63.6 92.2 65.3
101 99 91.1 92.4 76.9 98.5 92.1
102 100 100 100 100 100 100

N1 = 10, N2 = 20
10−1 76.2 48.6 97.2 85.7 79.4 83.3
100 91.4 85.9 97.2 95.2 87.8 91.7
101 98.5 90.9 99.9 97.6 97.5 98.4
102 100 100 100 100 100 100

N1 = sample size; N2 = Number of clusters; a, b = regression coefficients.
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The results of the interval imbalance are shown in Table
6, however, there was no statistically significant effect on the
interval imbalance.

EMPIRICAL EXAMPLE

In this example, we examined the relationship between
team leaders’ psychological capital (Xj) and team mem-
bers’ organizational citizenship behavior (Yij), with possi-
ble mediation through team members’ psychological
capital (Mij). Data were collected from 66 team leaders
(j = 66) and 303 team members (i = 303) in a large state-
owned enterprise in eastern China (Ren, Wen, Chen, &
Ye, 2013). This mediation design was commonly referred
to as the 2–1-1 mediation model because the level-2
independent variable Xj was hypothesized to impact the
level-1 mediator Mij, which in turn was related to the
level-1 outcome Yij. The point estimation and intervals
estimation for the mediated effects of team leaders’ psy-
chological capital (Xj) on team members’ organizational
citizenship behavior (Yij) through team members’ psycho-
logical capital (Mij) were computed using the distribution
of the product method, the MC method, the Bayesian
method with non-informative priors, and the Bayesian
method with informative priors.

The point estimation and the intervals estimation for the
mediated effects using the Bayesian methods were com-
puted using Mplus (Muthén & Muthén, 1998-2014) and the
respective Mplus codes to obtain the mediation estimate are
provided in the Appendix. The non-informative priors for
the Bayesian analysis were selected using the default spe-
cification in Mplus, with a ~ N(0, 1010), b ~ N(0, 1010). The

regression coefficients (a = 0.41, b = 0.71) and the standard
errors (SEa = 0.004, SEb = 0.015) from the Ren et al.’s
multilevel mediation analysis were set as the mean and
standard deviation of the normal priors. In the Ren et al.’s
study, the multilevel mediation effect was analyzed under
the normal assumption. The RMediation package (Tofighi
& MacKinnon, 2011) was used to obtain the interval esti-
mates for the distribution of the product method and the
MC method.

None of the intervals constructed using the distribution
of the product method, the MC method and the Bayesian
methods contained zero, thus one would conclude that the
indirect effect of team leaders’ psychological capital on
team members’ organizational citizenship behavior through
team members’ psychological capital was statistically sig-
nificant (Table 7). The intervals produced by the Bayesian
method with the informative priors were narrower and were
thus more precise than those using the Bayesian method
with the non-informative priors, the distribution of the
product method, and the MC method. These results were
consistent with those in our Study 1.

To investigate the influence of the misspecification of
the informative priors on the mediation analysis results, we
conducted a sensitivity analysis with several values for the
prior variance and the prior mean of a and b. First, we only
varied the prior variance. More specifically, the variance
parameter of the priors for the regression coefficients a and
b was varied to 5, 10, 20, and 50 times the observed
variance of the corresponding regression coefficient. The
priors in the sensitivity analyses and the result are summar-
ized in Table 8. These results indicated that the higher the
prior variance was, the wider intervals for the mediating
effect would become. This observation was consistent with

TABLE 6
Power, 95% Interval Width and Interval Imbalance for the Mediating Effect in Study 3

a ¼ b ¼ 0:39 a ¼ b ¼ 0:59 a ¼ b ¼ 0:59

power
Width
(imban) power

Width
(imban) power

Width
(imban) power

Width
(imban) power

Width
(imban) power

Width
(imban)

prior a=0.14 b=0.14 a=0.14 b=0.14 a=0.39 b=0.39
N1=10, N2=10

10−1 .368 .31(15) .090 .39(16) .640 .465(31) .210 .579(53) .844 .458(19) .350 .868(12)
100 .388 .384(9) .172 .59(13) .726 .559(18) .282 .902(11) .736 .586(5) .364 .888(6)
101 .438 .401(7) .172 .685(7) .730 .589(1) .366 1.03(-5) .708 .604(2) .354 .987(5)
102 .456 .408(7) .170 .692(1) .720 .594(2) .372 1.07(0) .712 .609(2) .350 1.01(11)

N1=10, N2=20
10−1 .758 .24(10) .282 .32(19) .972 .360(7) .576 .481(40) .982 .361(-6) .664 .611(8)
100 .760 .27(12) .336 .41(17) .978 .394(10) .608 .598(9) .980 .393(7) .660 .596(13)
101 .770 .27(10) .346 .425(4) .976 .396(7) .666 .605(8) .978 .400(6) .650 .620(10)
102 .770 .27(13) .348 .426(-2) .970 .400(9) .650 .621(12) .968 .401(4) .666 .631(1)

N1 = sample size; N2 = Number of clusters; a, b = regression coefficients.
Imban denotes the interval imbalance, shown in brackets.
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the results of our second simulation study. Second, we
varied both the prior mean and the prior variance. Prior
mean was set to half of the observed mean of the corre-
sponding regression coefficient simultaneously as we var-
ied the prior variance. The results are also shown in Table
8. The results indicated that the smaller the prior variance
was, the greater the influence the prior mean would have on
the mediating effects. This observation was consistent with
the results of the third simulation study. Third, the results in
Table 8 showed that all the intervals did not contain zero,
Robustness of results in a sensitivity analysis indicated that
the prior settings were proper.

DISCUSSION

Comparisons of methods with informative priors

The first simulation study compared the performance of the
Bayesian method (accurate informative priors, non-
informative priors), the MC method, the distribution of
the product method, and the parametric residual bootstrap
method (bias-uncorrected, bias-corrected) in their point and
interval estimation of mediating effects in the 2–1-1 multi-
level model with a random slope. The results of the point
estimation of mediating effects indicated that the RMSEs

based on the Bayesian method with informative priors were
significantly smaller than those in other methods under all
conditions of the sample size. The results on the confidence
interval analyses of mediating effects showed that the
Bayesian method with informative priors had the largest
power, the smallest interval width, and the smallest interval
imbalance among the six methods. Those results suggested
that the Bayesian method with informative priors might
have the best performance in the 2–1-1 random-slope mul-
tilevel mediation analysis.

The advantages of the Bayesian method with informa-
tive priors in small samples, with the most accurate point
and interval estimation, may be closely related to the avail-
ability of the prior information. In the situations with small
samples, only limited information could be obtained from
the data, far from enough for gaining the accurate point and
interval estimation of mediating effects. However, when the
Bayesian method with informative priors was used, the
effective prior information might lead to a shrinkage in
the posterior distribution of parameters, thus helping to
obtain a more accurate point and interval estimation of
mediating effects (Depaoli & Clifton, 2015; Yuan &
MacKinnon, 2009). Moreover, the convergence problem
caused by negative variances could also be avoided by
adding effective prior information (Depaoli & Clifton,
2015).

TABLE 7
Result of the Empirical Example

Method Informative prior Mediating effect ab Standard error of ab Interval of ab

DP \ 0.260 0.060 [0.151, 0.387]
MC \ 0.260 0.060 [0.151, 0.388]
Baynon a ~ N(0, 1010) b ~ N(0, 1010) 0.256 0.064 [0.143, 0.394]
Bayinf a ~ N(0.41, 0.004) b ~ N(0.71, 0.015) 0.274 0.046 [0.191, 0.370]

MC, DP, Bayinf and Baynon refer to the Monte Carlo method, the distribution of the product method, the Bayesian method with informative priors and
the Bayesian method with non-informative priors, respectively

a, b = regression coefficients

TABLE 8
Result of the Sensitivity Analysis

Informative prior Mediating effect ab Standard error of ab Interval of ab

True value a ~ N(0.41, 0.004) b ~ N(0.71, 0.015) 0.274 0.046 [0.191, 0.370]
Five times variance a ~ N(0.41, 0.02) b ~ N(0.71, 0.075) 0.262 0.058 [0.158, 0.388]
Ten times variance a ~ N(0.41, 0.04) b ~ N(0.71, 0.15) 0.259 0.061 [0.151, 0.391]
Twenty times variance a ~ N(0.41, 0.08) b ~ N(0.71, 0.3) 0.258 0.062 [0.147, 0.393]
Fifty times variance a ~ N(0.41, 0.2) b ~ N(0.71, 0.75) 0.256 0.063 [0.145, 0.394]
Half of mean and five times variance a ~ N(0.21, 0.02) b ~ N(0.36, 0.075) 0.221 0.054 [0.124, 0.337]
Half of mean and fifty times variance a ~ N(0.21, 0.2) b ~ N(0.36, 0.75) 0.251 0.063 [0.141, 0.387]
Non-informative priors a ~ N(0, 1010) b ~ N(0, 1010) 0.256 0.064 [0.143, 0.394]

a, b = regression coefficients
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In larger samples, with more information obtained from
the data, the role of prior information became less signifi-
cant than with smaller samples, and the results of the
mediation estimation using different methods became
more similar (see Tables 1 and 2). However, the prior
information might still have an advantage because with
the Bayesian method with informative priors, the RMSEs
of the point estimation and the interval width were smaller
and the power was larger than when other methods were
used. In sum, we recommend the use of the Bayesian
method for the multilevel mediation analyses when prior
information is available.

Specifying the prior information

Studies 2 and 3 showed that the misspecification of prior
information for the regression coefficients a or b weakened
the multilevel mediation analysis. Despite this fact, the
result of the multilevel mediation analysis with the misspe-
cification of prior information is generally not worse than
that of the Bayesian method with non-informative priors.
The larger misspecification of the prior information led to
a larger RMSE and a larger interval width, and the change
of power, especially when the prior variance is less than 1.
Miočević et al. (2017) also suggested that prior variance
should be larger than the variances of the parameter esti-
mates obtained from previous studies. If there is no strong
theoretical justification for specifying a prior or when
a prior was chosen out of convenience, we suggest that
a larger than 1 prior variance should be adopted.

It is interesting to note that for medium and large med-
iating effects (a = b = 0.39 and 0.59), an increase in the
prior variance would lead to a smaller power when the prior
mean was set to the true value. In contrast, a decrease in the
prior variance would lead to a smaller power when the prior
mean was not equal to the true value. The possible expla-
nation is that the prior variance reflects researchers’ degree
of certainty about the prior information. On the one hand,
when prior mean is set to the true value, a higher prior
variance reflects less confidence that the prior mean is equal
to the true value of the regression coefficient a or b. This
would then create a more diffuse prior for the regression
coefficient, which subsequently would lead to a reduction
in the power. On the other hand, when the prior mean is not
to equal to the true value, a decrease in the prior variance
would reflect more confidence in the specified prior mean,
and thus would lead to a reduction in the power.

Another notable finding in Studies 2 and 3 was that the
influence of the misspecification of the prior information of
the b coefficient on the multilevel mediation analysis was
significantly greater than that on the coefficient a. This
result supports the conclusion that it may be more impor-
tant to focus on the association between the mediator and
the outcome than on the association between the

intervention and the mediator (Fritz, Taylor, &
MacKinnon, 2012). It is noteworthy to point out that the
prior information can stem from a meta-analysis, previous
studies with comparable research populations, a pilot study,
or even experts. Thus, in order to avoid choosing some
inappropriate prior information, a sensitivity analysis could
be conducted to examine different prior information and to
observe the influences of the posterior distribution (Table 8;
Depaoli & van de Schoot, 2017; Miočević et al., 2017).

Comparisons of methods without informative priors

When the prior information is unavailable, the bias-corrected
parametric percentile residual bootstrap method was found to
have a larger power than other methods in most conditions
(see Table 2). However, this method also had higher rates of
the Type I error in some situations, suggesting that when this
method was used, the decrease in the rates of the Type II
error was at the cost of an increase in Type I errors (Fritz
et al., 2012). Fritz et al. (2012) clearly stated that when
different methods had similar power, it was not necessary
to choose a method that would enlarge power at the cost of
an increase of the Type I error rate. Moreover, there was also
evidence that in the simple mediation analyses on latent and
observable variables, the coverage rates of confidence inter-
vals based on the bias-corrected bootstrap method were
lower than those based on the bias-uncorrected bootstrap
method (Biesanz et al., 2010; Falk & Biesanz, 2015). We,
therefore, do not recommend the use of the bias-corrected
parametric percentile residual bootstrap method.

Our recommendation was contradictory to that by Pituch
et al. (2006, 2008). They argued that the bias-corrected
parametric percentile residual bootstrap method performed
better than the parametric percentile residual bootstrap
method. Worth noting is that their conclusion was based
on their finding of an overall (averaging across conditions)
Type I error rate of the bias-corrected parametric percentile
residual bootstrap method being close to the nominal level.
Research has clearly pointed out that the overall error rate
is not a suitable indicator of Type I error rate (Biesanz
et al., 2010; Falk & Biesanz, 2015).

Furthermore, the distribution of the product method per-
formed the worst in terms of interval imbalance, which was
consistent with findings in previous studies (Pituch &
Stapleton, 2008, Pituch et al., 2006; Preacher & Selig,
2012). Although McNeish (2017) argued that the Monte
Carlo method and the distribution of the product method
had similar performance, the interval imbalance was not
used to compare the performance of the Monte Carlo method
and the distribution of the product method in McNeish’s
(2017) study.

Among the other three methods (i.e., the Bayesian method
with non-informative priors, the MC method, and the para-
metric percentile residual bootstrap method), which had similar
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performance, we recommend the use of theMCmethod among
these three formultilevelmediation analyses. The reasons are as
follows. First, theMCmethod can be conductedwithout the use
of the raw data, whereas the bootstrap and the Bayesianmethod
cannot (McNeish, 2017; Preacher & Selig, 2012; Tofighi &
MacKinnon, 2016). Second, theMCmethod is faster to execute
than the bootstrapmethod because amodel is fit to the data once
only, where a model has to be fitted to all the bootstrap samples
in the bootstrap method (Preacher & Selig, 2012). Third, the
MC method can be used to analyze multilevel mediation with
latent variables, whereas so far the bootstrap method cannot do
it (McNeish, 2017, Preacher et al., 2011, 2010). Fourth, theMC
method is easy to implement with RMediation (Tofighi &
MacKinnon, 2011), whereas there has not been any convenient
software for the parametric percentile residual bootstrapmethod
(Preacher et al., 2010). It is also noted that the Bayesian method
with non-informative priors could be a useful alternative to the
MCmethod. It is because this method also has a fast computing
speed and the ability to analyzemultilevel mediationwith latent
variables (McNeish, 2017).

Limitations and prospects

First, only four factors (i.e., the sample sizes of levels 1 and 2,
the sizes of the mediated effect, and the analytic methods)
have been considered in this research. Future research might
consider the impacts of other factors, such as ICC (Depaoli &
Clifton, 2015; Krull & MacKinnon, 2001), 1-1-1 multilevel
models (Bauer, Preacher, & Gil, 2006; Pituch et al., 2008;
Yuan & MacKinnon, 2009), and non-normal data (Biesanz
et al., 2010; Pituch & Stapleton, 2008).

Second, all the variables in this study were observable
variables. Previous studies indicated that there might be
a deviation, however, when estimating the mediation
with observable variables when the measurement errors
have not been considered. Setting up a latent variable
model may provide more accurate estimates of the med-
iating effects (Preacher et al., 2011, 2010). But it is also
worth noting McNeish’s (2017) found that when the
sample size of level 2 was less than or equal to 50 and
the MC method and the distribution of the product
method were used for the 2–1-1 multilevel mediation
analyses, the latent variable approach performed signifi-
cantly worse than that with observable variables in terms
of their power and interval coverage rates. McNeish
(2017) further recommended the use of observable vari-
ables for multilevel mediation analyses when both
observed and latent variables were available and when
the sample size of level 2 was less than or equal to 50.
These inconsistent findings indicate that the performance
of various methods in multilevel mediation analyses has
to be further studied.

Third, the present study did not consider multiple media-
tion analyses. Tofighi and MacKinnon (2016) compared the

performance of the MC method and the bootstrap method in
SEM analyses of the multiple mediation models and recom-
mended the use of the MC method. Currently, the Bayesian
method has never been applied to the multiple mediation
analyses. Further research is still needed on the performance
of various methods, including the Bayesian method, the MC
method, and the bootstrap method, in multiple mediation
analyses.
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APPENDIX
MPLUS CODES IN MULTILEVEL MEDIATION

ANALYSIS

TITLE: 2-1-1 multilevel mediation model with a random slope using
Bayesian (x = Lpsycap, m = fpsycap, y = focb)
DATA: FILE IS 3.txt;
VARIABLE: NAMES ARE group fpsycap focb Lpsycap mfpsycap;

USEVARIABLE = group fpsycap focb Lpsycap
mfpsycap;

BETWEEN IS Lpsycap mfpsycap;
within is fpsycap;
CLUSTER IS group;

define: CENTER fpsycap (groupmean);
ANALYSIS: TYPE IS TWOLEVEL RANDOM;

estimator = bayes;
FBITERATIONS = 50000;

MODEL:
%WITHIN%
fpsycap focb;
b1 | focb ON fpsycap;
[fpsycap@0];
%BETWEEN%
mfpsycap focb;
mfpsycap ON Lpsycap(a);
focb ON mfpsycap(b);
focb ON Lpsycap;
MODEL PRIORS:

a ~ n (0.41, 0.004);
b ~ n (0.71, 0.015);

MODEL CONSTRAINT:
NEW(indb);
indb = a*b;
OUTPUT: TECH1 TECH8;
plot: type = plot2;
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